VZLUSAT-1 and space environment

Lenka Mikuličková, Vladimír Dániel, Ondřej Nentvich, Martin Urban

SPACE RADITION

Galactic Cosmic Rays

olar Energetic Particles olar Particle Events or oronal Mass Ejections)

Galactic Cosmic Ray

EARTH'S RADIATION BELTS

- Energetic particles (p⁺, e⁻) trapped by the magnetic field of the Earth
- Inner radiation belt (1600 13000 km):
 - protons 10-100 MeV, elektrons up to 1 MeV)
- Outer radiation belt (19000 40000 km):
 - elektrons 0,1-10 MeV
 - Very dynamic, strongly influenced by the Solar wind
- VZLUSAT-1 (SSO, altitude 505 km)
 - Under the inner radiation best
 - Flies through the belts in the region of Southatlantic anomaly and in polar region

SOLAR WIND, FLARES AND CMEs

- Solar wind: continuous supply of e^{-} , p^+ , He^{2+}
- Solar flares and CMEs (Coronal mass ejections)
 - X-rays and UV radiation, e⁻, p⁺, ions
 - Četnost závisí na slunečním cyklu

GALACTIC COSMIC RAYS

- Radiation originating outside of Solar system
- Low fluxes, high energies, broad particle spectrum

Mutual dependency – the lower the Solar activity, the higher GCR level and vice versa

RISKS OF RADIATION

- Human crews deadly dose approx. 500 rad
- Risks to electronics
 - Critical dose (absorbed energy per mass) for COTS approx. 10 krad
 - Dangerous Single Event Effects (SEE) individual hits by energetic particles (both reversible and irreversible damage)
 - The higher the integration of electronic devices, the more vulnerable to radiation damage they are (primarily by SEE)
- Materials (primarily polymeric materials and glass) can be sensitive to radiation too changes of mechanical properties, changes of colour etc.

Comparison of radiation levels at different orbits

SHIELDING – COMPOSITE PANELS

- Structural panels of VZLUSAT-1 are based on carbon fibre reinforced polymer composite (CFRP) (producer 5M)
 - Lighter material with better mechanical properties, but worse radiation shielding capabilities than traditionaly used Al alloys
- Radiation hardened composite shielding (RHCH) = composite with metallic coatings
 - Maximalized shielding capabilities and light weight
 - Better thermal and mechanical properties
- Coatigns designed by computer simulation of shielding capabilities
- Improvement of thermal and mechanical properties verified experimentally

120

SIMULATION OF THE ENVIRONMENT AT VZLUSAT-1 ORBIT AND OF THE SHIELDING CAPABILITIES

- Spectrum of radiation generated in OMERE software
- Transport of the radiation through matter simulated in MULASSIS tool
- Total ionizing dose (TID) absorbed in Si detector behind the shielding was evaluated
- All materials with the same surface density cause significant decrease of TID (from 27 krad to units of krad per year)
- RHCH better shielding capabilites than CFRPstejné hmotnosti jako hliníkový panel stejné stínicí schopnosti

MEASUREMENT OF SHIELDING CAPABILITES OF CFRP AT THE ORBIT

- Experimental verification of shielding capabilities of RHCH by a panel of 3 Si PIN diodes detecting radiation:
 - From the open space
 - Behind RHCH
 - Behind RHCH shielded by 1 mm W

MEASUREMMENT OF MECHANICAL PROPERTIES OF RHCH AT THE ORBIT

• Non-destructive measurement of mechanical properties by vibration spectroscopy (change of the resonant frequency is monitored)

OUTGASSING IN SPACE

- Hidden danger in space high vakuum (10⁻⁶ až 10⁻⁹ torr at LEO)
- Many materials (mainly organic polymers) significantly outgasses, degrade and the vapour from them can damage other parts of the spacecraft
- Even materials relatively stable in vacuum can contain pockets of volatile substances, that can burst in space vakuum and cause problems
- For sensitive instruments even natural adsorption layer that every surface has because of Earth's atmosphere can be harmful
- Outgassed matter water vapour, siloxanes, hydrocarbons...

WATER VAPOUR

- The major part of outgassed matter for majority of materials
- The biggest danger for cooled surfaces (eg. CCD detectors) condensation, frozing
- Examples of problems caused by water vapour condansation:
 - CASSINI condensation at $\rm CCD$ several time out of service
 - STARDUST contamination of optics,
 - GAIA worsening of sensitivity of the optics
- Current measurement quartz microbalances necessary to cool under the dew point (as low as -120 °C in space)

THIN FILM MOISTURE SENSORS HAL2

- Ones of the most sensitive sensors in the world
- Trace moisture detection down to DP -100 °C (approx. 10 water molecules ppb)
- Sensitive layer porous layer based on Al_2O_3 that changes its electrical properties based on the amount of adsorbed water in its structure

MOISTURE SENSORS ON BOARD VZLUSAT-1

- 2 HAL2 sensors placed inside of the satellite, 1 faces the open space
- Complemented by sensors HYT 271 and HYT 939 from IST AG company
- First use of sensors of this type in space
- Ground tested for detection of water vapour in high vacuum.

SIGNAL FROM MOISTURE SENSORS FROM SPACE

- The experiment started approx. a month after the launch
- Incidents with significant outgassing have not been detected
- Gradual decrease of signal observed agrese with a gradual svědčí o postupném zmírňování plynění součástí družice
- The stability of moisture sensors at space LEO condition verified:
 - High vacuum
 - Temperature cycling
 - Radiation

THANK YOU FOR YOUR ATTENTION